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 1. Overall, did the subject context of this workshop meet your expectations and needs?    

                Yes (  )       No (  ) 
 

If yes, in what way?  If no, why not?  ___________________________________________ 
 
___________________________________________________________________________ 
 
                                                                                                                                                                             

 2. Was the content of this workshop of value to you personally or on the Job?    
               Yes (  )        No (  ) 

 
 3. Was the content of the workshop:               New (  )   New/Review (  )    Review (  ) 
 
 4. The level and complexity of  

this workshop was:              Too elementary (  )    Correct (  )      Too advanced   (  ) 
 

 

 
 
 5. Rate the extent to which this workshop: 
 

 a. Presented content clearly    1 2 3 4 5 
 

 b. Allowed sufficient time for discussion 
   and audience participation    1 2 3 4 5 

 
 c. Provided useful information    1 2 3 4 5 

 
 d. Utilized appropriate teaching methods,  

   i.e., audiovisual, handouts, lectures   1 2 3 4 5 
 
6. Please rate each workshop faculty member: 
 

 
Name Knowledge of Subject Organization/Delivery 

 
K. K. Gordon Lan 1    2    3    4    5 

 
1    2    3    4    5 

Please complete the following questions by circling the appropriate 
description using the rating scale listed below. 

 
1 = excellent    2 = very good    3 = good    4 = fair    5 = poor 

 



 
 
 
 1. Are you currently working in a clinical trial?    (Yes)  (No) 
 
 
2. What is your job title? __________________________________________________________ 
                                                                                        
3. Do you have any suggested topics for workshops at future meetings?  If so, please list below: 

 
 _____________________________________________________________________________ 
 
 _____________________________________________________________________________ 
 
4. What aspect of the workshop did you like best? 

 
_____________________________________________________________________________ 

 
 _____________________________________________________________________________ 
 
5.  What aspect of the workshop would you change if this workshop were offered again? 

 
_____________________________________________________________________________ 
 
_____________________________________________________________________________ 

 
 
6. Additional Comments:  _________________________________________________________ 
  
 _____________________________________________________________________________ 
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Interim data analysis 
 

In 1960s and 1970s, many NIH-sponsored clinical trials were design 
as fixed studies.  Data were monitored periodically by a group of 
scientists (Policy Advisory Board, Data safety and monitoring Board, 
Data Monitoring Committee). Statistical procedyes  
 
Group sequential methods: Pocock (1977), O’Brien-Fleming (1979), 
Alpha spending functions (1983). 
 
1980s: NIH started to use sequential designs for clinical trials. 
1990s: The pharmaceutical industry started to use sequential design. 
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Outline 
 

1.  Design of a fixed study (Chapter 2) 
Sample size estimation for a fixed design; 
B-value and the trend of the data.   

2.  Conditional power and predictive power  (Chapter 3) 
3.  Group sequential  methods (GSM) 

Classical GSM, Pocock 1977 and O’Brien-Fleming 1979 
Spending function 
Computing boundary and drift for sample size evaluation 
(Chapter 4) 

4.  Survival data analysis (Appendix) ---Lecture 2 
 

Reference: Statistical Monitoring of Clinical Trials: A unified approach  
By Proschan, Lan and Wittes; Springer 2006. 

Software available -- http://www.medsch.wisc.edu/landemets/ 
(window version, ld98) 
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Distribution theory for a one-sample problem 
 
Why start with a one-sample problem? 
The mathematics behind a one-sample problem is very 
straightforward and easy to understand.  Extension of the 
idea (not the mathematics) to the two-sample case needs 
only slight modifications. 
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Compare a new treatment T with a control treatment C. 
 
Suppose YT ~ N(μT, σ2) and YC ~ N(μC, σ2), then  
X= (YT - YC)/σ√2 ~ N(Δ,1), where Δ = (μT - μT)/ σ√2.   
 
In other words, if we pair responses YT and YC, and 
“standardized” the difference by X= (YT - YC)/σ√2, then 
the 2-sample problem becomes an 1-sample problem. 
 
 

X has mean Δ and variance 1. A positive response Δ favors 
the new treatment. To simplify our discussion, we assume 
the X’s are normally distributed.  The theory applies to 
responses different from normal if the sample size is 
“LARGE”. 
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“Trend of the data” – The partial sum process 
 
Let X1, X2, …., Xn ,….be iid N(Δ,1). Define Sn = X1+ X2+ ….+ Xn.   
 
Then ESn = n Δ and Var(Sn) = n.  
 
The expectation is a linear function of the variance. 
 
Good news: This linear relationship gives us an easy tool to “predict” 
the future outcome conditional on accumulating data.  
 
Bad news: The prediction depends on the treatment effect Δ which is 
unknown to us. In addition, we evaluate Z instead of S. 
 

nZ (n )  =  S / n .  
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Example: To design a clinical trial, we test the hypothesis  
H0: Δ = 0 versus Ha: Δ > 0. 

 
If we take an one-sided α = 1.96 and 85% power (β = 0.15), 
how many patients do we need? 
 
How many patients do we need to reach a 85% power? 
 

NZ ( N )  =  S / N .

E Z ( N )  =  N Δ / N  =  N Δ .  
 
Let us assume that the treatment effect Δ = Δ1 = 0.2.  
Solve for N from the equation: 

1 α βEZ(N) = NΔ  = z +z  = 1.96+1.04 = 3, N = 225.  
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1 1

1 α β

For a given  = , the drift parameter is θ = E(Z) N .
To evaluate sample size N, solve N from  

θ = E(Z) N =  z  + z   1.96  1.04  3.0.

Δ Δ = Δ

= Δ = + =   

 
Δ1 = 0.5   0.2     0.1      0.05     0.01     → 0 
 
N  =  36   225   900     3600   90000   → ∞ 
 
 
A fundamental equation for sample size evaluation: 

θ = EZ = zα + zβ. 
 
(Change zβ to 0.84 for 80% and 1.28 for 90%.) 
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Comments: 
 
θ  = EZ(N) = NΔ  is called the Drift parameter.  
 
This drift parameter, depending on N and Δ, is unknown to us in 
practice.  However, for any given value of Δ, θ = EZ(N) is known. 
 
Under the null hypothesis, Δ = 0 = θ. 
Under alternative Δ = Δ1 > 0, θ  > 0. 
(If the treatment is beneficial, the drift is positive.) 
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The trend of the data = Δ 
Interim analysis(Partial sums) 

                       X1, X2, …., Xn,   Xn+1,….. XN 
Unconditional   random   random 

 Conditional    fixed   random 

 

 
        

     SN            =      Sn     +    (SN – Sn) 
 Conditional  ESN    =      nΔ +    (N-n)Δ 
                Var(SN)    =      n       +    (N-n) 
 Unconditional    EC(SN)    =      Sn      +    (N-n)Δ   (Δ=?) 
 Variance            VarC(SN) =      N-n 
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The trend of the data = θ  (B-values) 
 

 Δ1>0

1N Δ θ 3= =

n N0    1    2    3    

EZ(n) 

nΔ1

 
 

(n, Z(n) )→(τ  ,  Zτ)→(τ  ,  Bτ)   where τ=n/N  & Bτ = Zτ √τ. 
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Example:  
 

 

.4

1 .4

τ

Δ=0.2 ,  = NΔ=3  N=225.
when  n=90  ,  Z =2.846
CP(θ) = P(Z ³1.96 Z =2.846, θ) = ?

τ = 90/225 = 0.4; B  = 2.846 τ=

θ

1.8.

⇒

 

 
Note that Z1 = B1. To evaluate CP(θ), let us do it in TWO 
steps. 
1. Find EC(Z1). 
2. Find PC(Z1≥1.96). 
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Two-sample comparisons,  Comparison of two means 
 

ο x y a x y

2
1 2 M X

2
1 2 M Y

M M M
M M i i i i1 1 1

(N)

x y x y
(N)

H :μ = μ       vs     H :μ  > μ  

X ,X ,...,X    iid  N(μ ,σ )
         N=M+M=2M

 Y , Y ,... ,Y    iid  N(μ ,σ )

X - Y (X -Y )X -YZ = = =
1 1 σ M+M σ Nσ +M M
μ -μ μ -μN 1 1θ=EZ = = N ×
σ 4 σ 2 2

∑ ∑ ∑
 

 
 

two-
sample 
factor

 treatment
difference

sample
size
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1 2

Set   EZ =  = z z   and solve for N.

After    '    and     '   have been observed,m X s m Y s
α βθ +

 

1 2

1

1 2

1

1 2

1 1( )
   where  .    1 11 1 ( ) 

m m m mX YZ

M Mm m

τ τ
σ

−

−

+
−

= =
++         . 

 
* 1 2Note that  .m m n

N N
τ τ +

≈ = = . 
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Examples: 
 
N = 800 = 400 + 400. 
(i)  n = 500 = 250+250,   τ*=.625 ,  τ =.625. 
(ii) n = 500 = 230+270,   τ* =.625 ,  τ=.621. 
(iii) n = 500 = 200+300, τ*=.625 ,  τ = .600. 
 
N = 900 = 600 + 300. 
(i)  n = 540 = 360+180,   τ*=.600 ,  τ =.600. 
(ii) n = 540 = 345+195,  τ* =.600 ,  τ=.623. 
(iii) n = 500 = 300+240, τ*=.600 ,  τ = .667. 
 
References:   
Lan and Zucker  1993  Stat. in Medicine 
Lan, Reboussin and DeMets  1994 Comm. Stat. A 
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We pick a Δ1 to design a study.  During interim, what 
if the observed Δ^ is quite different from Δ1? 
 

 
Sample size re-estimation 
What is the test statistic after sample size re-estimation 
 
A hot topic in adaptive design and will not be covered in 
this short course. 
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For a fixed design, the use of conditional power to 
stop early for benefit WILL INFLATE the alpha 
level. 
 
Reason:  A fixed design spends all alpha at the 
end. P(Z1≥1.96)=0.025. 
Any interim analysis for benefit has to spend 
additional alpha.  
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Early stopping of clinical trials 
 
Use CP (or PP) for futility stopping. 
 
To stop early for benefit, we use a group sequential 
design. 
 
Stop early for benefit if a one-sided upper boundary is 
crossed. 
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Repeated Significance Tests & Group Sequential Methods 
(One-sided version of the original article) 

 
 

Armitage, et al. 1969 JRSS 
 

043.0)96.196.1(
025.)96.1(

15.

1

=≥≥
=≥

ZZP
ZP

or     

 
 
K                      1 2 3 4 5

(Type I error) .025 .043 .055 .064 .072 1P
∞"

"  
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Pocock boundary (1977 Biometrika)  
For α = .025 (one-sided) 
 
 
K 1 2 3 4 5 8 12
c.v. or boundary 1.96 2.16 2.28 2.34 2.41 2.50 2.58  
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O’Brien-Fleming boundary  (1979  Biometrics) 
 

( ) 025.
025.5

0.204.204.2
04.204.2

6.4.2.
18.

=

==
≥≥≥

≥≥
4or   or    

or     or             

sided)(one     ,
BBB
BBP

K α
 

 

04.204.2

28.2
8.

04.204.2

63.2
6.

04.204.2

23.3
4.

04.204.2

56.4
2.

04.204.2

11

8.8.

6.6.

4.4.

2.2.

≥↔≥

=≥↔≥

=≥↔≥

=≥↔≥

=≥↔≥

ZB

ZB

ZB

ZB

ZB
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Examples of the drift: 
Comparison of two means:    ___ 
Treatment effect Δ = (μX - μY)/σ,  θ = Δ√N/4. 
 
Comparisons of two survival distributions using the logrank: 
             ___ 
Treatment effect Δ = log(hazards ratio),  θ = Δ √D/4. 
 
For a fixed design, choose sample size (N or D) so that θ = zα + zβ. 
For sequential designs, the same θ will give power < 1-β. (Wisc) 
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Alpha spending functions 
 
α*(τ) is a non- decreasing function defined on [0,1]  
with α*(0) = 0, α*(1) =α. 

At τ1 , find b1 such that (under H0)  P(Zτ1≥ b1 ) = α*(τ1). 
  

At τ2 , find b2 such that P(Zτ1< b1 and Zτ2 ≥ b2) = α*(τ2) - α*(τ1). 
 

 
 
At τ3,  …….. 
 
(Wisconsin software) 
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Alpha-spending function 
   
 
 α*(τ)   
 
 
 
 
 
 

 

 0.025  
 

2)- α*( 1)    α*(τ τα*( 
 
 
 
 
 
 
 
  

 
 

0
τ  

τ2τ1 1

τ1) 
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For a fixed design, sample size N can be evaluated from  
θ = EZ = zα + zβ. 
 
When N is derived from the above equation for a sequential design, 
the power of the design will be less than 1-β, or, we need a larger θ 
to reach the power 1-β.   
 
The value of θ required to reach desired power for a sequential 
design depend on the boundary chosen. (Wisconsin software) 

SCT Part 1, 5/16/2010                                                                   27            J&J / LAN 
 



 

Comparison of two means, N=N/2+N/2:     
Treatment effect Δ = (μX - μY)/σ,   

X
EZ=E .

41/0.5 1/0.5

Y N

N N
θ

σ
−

= = Δ
+  

For Δ = 0.1, θ = 3 ⇒ N=3600 for 85% power. 
 
Suppose we modify this to a sequential design. 
Trade off:  
We may stop the trial early, but we will lose power. 
(An example will be given later using the Wisconsin software.) 
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The Wisconsin software (window version) can do the following: 
 

I. Bounds – compute boundary from a spending function. 
II. Drift:  Compute drift parameter θ from given boundary and 

desired power. 
III. Probability:  Probability of boundary crossing for a given 

boundary and drift.  
IV. Confidence (intervals). 

 
 
This window version is a front end of the interactive program ld98. 
Unfortunately, the window version is NOT compatible with Office 
2007. (???) 
 

SCT Part 1, 5/16/2010                                                                   29            J&J / LAN 
 



 

I. Bounds (choose “Bounds” under “Compute”) 
 
Interim analyses K (default=5) → may be changed 
Information times (def = equally spaced) →user input 
Test boundary (def = two sided symmetric)  

→ one-sided, two-sided asymmetric 
Overall alpha (def =0.05) →0.025, e.g. 
Spending function (def = O’Brien-Fleming)  

→ Pocock, Power family, Hwang-Shih-DeCani 
 
Truncation bounds (def=no) (an example will be given  later) 

SCT Part 1, 5/16/2010                                                                   30            J&J / LAN 
 



 

Example:  Change to one-sided 0.025, hit “calculate” button. 
 
Output: 
  Time Upper   Nominal upper Cum alpha 
    Bound        alpha 
1  0.2  4.8769  .00000    .00000 
2  0.4  3.3569  .00039    .00039 
3  0.6  2.6803  .00368    .00381 
4  0.8  2.2898  .01102    .01221 
5  1  2.0310  .02113    .02500    
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Change “Truncate bounds” from “no” to “yes” with truncation 
point =  3.5, hit “calculate” button. 
 
New boundary values are:  
 3.5000, 3.5000, 2.6893, 2.2915, 2.0317 
(4.8769, 3.3569, 2.6803, 2.2898, 2.0310) 
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III. Probability (choose “Probability” under “Compute”) 
 
For the boundary derived above, if the drift parameter (input) is  
θ = EZ = zα + zβ= 3, then the last column of the output looks like 
this:  .01545  
  .06083  
  .35986 
  .65963 
  .84223 = power 
 
We need to increase the θ value to attain power=0.85. 

SCT Part 1, 5/16/2010                                                                   33            J&J / LAN 
 



 

II. Drift (choose “Drift” under “Compute”) 
 
Same input as before, input power = 0.85, hit “calculate” button. 
Output:  drift = 3.033. 
 
For given treatment effect, solve for sample size from equation 
  

EZ = zα + zβ= 3.033. 
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Constant boundaries (Classical GSM)  
versus spending functions 
 
Example: Pocock boundary 
 
τ =            .4   0.7   1.0 
Constant     2.194     2.194 
Boundary     2.274  2.274  2.274  
 
What is the boundary value when τ = 0.4? 
 
Spending     2.224  2.305  2.310 
Function     2.224     2.165 
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Conditional power example: 
τ=     0.2  0.4  0.6  0.8  1.0 
boundary (Z)  3.50 3.50 2.69 2.29 2.03 
Z-value   0.93 1.37 2.36 
Boundary (B)  1.565 2.214 2.084 2.048 2.03 
B-value   0.416 0.866 1.828 
θ^=1.828/0.6=3.047 
 
τ=    0.2       0.4    1 
boundary(B) 2.048-1.828=0.220    2.03-1.828=0.202   
 
boundary (Z)  0.492      0.319   -8 
CP    0.808      0.958   1  
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Quick review of B-value:  Conditional power depends on τ, Bτ and 
the drift parameter θ.   

τ
τ

B +(1-τ)θ-1.96CP( ,B ,θ)  = Φ[ ]                  (Eq 1)
1-τ

τ
 

(i) It is easy to evaluate. 
(ii) It communicates easily to clinicians.  
 
It seems to be natural to take θ = θE = Bτ/τ. 
Under this empirical drift,  

τ
τ E

B / -1.96CP( ,B ,θ )  = Φ[    (Eq 2)
1-τ

]                    ττ
 

 

However, θE = Bτ/τ is only a point estimate of θ. 
If we consider θE as random, CP becomes PP. 
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From conditional power (CP) to predictive power (PP) 
 

τ=0.4, Zτ=1.6. 
 

-2.0 SD 0.0433 
-1.5 SD 0.1353 
-1.0 SD 0.3124 
-0.5 SD 0.5491 
Empirical 0.7690 
+0.5 SD 0.9112 
+1.0 SD 0.9750 
+1.5 SD 0.9950 
+2.0 SD 0.9993 
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Weighted average of CP (τ=0.4, Zτ=1.6) 
 
 
 
 
 
 
 
 
 
 

-2.0 SD 0.0433 0 
-1.5 SD 0.1353 0 
-1.0 SD 0.3124 0.1 
-0.5 SD 0.5491 0.2 
Empirical 0.7690 0.4 
+0.5 SD 0.9112 0.2 
+1.0 SD 0.9750 0.1 
+1.5 SD 0.9950 0 
+2.0 SD 0.9993 0 

 
0.1x0.3124+0.2x0.5491+0.4x0.7690+0.2x0.9112 
+0.1x0.9750 = 0.7284 
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How can we choose another fixed drift, say θM, to replace 
θE to evaluate the chance of a positive study? 
 
(i) θM depends on θE; and 
(ii) θM depends on the “accuracy” of θE as a point 

estimate of θ. 
 
Do we expect θM ≥ θE or θM ≤ θE? 
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Predictive power (considers θ as random) 
 
Note that θE = Bτ/τ is a point estimate of  θ. If we  
consider θ as random with distribution function G  
 
PP = PP[τ, Bτ, G(θ)] = ∫ CP(τ, Bτ, θ) dG(θ)  
=∫ CP(τ, Bτ, θ) g(θ) dθ   
 
(Note that we did not introduce a prior distribution and 
went directly to the posterior distribution of θ.) 
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A reasonable choice of G (for a fixed n) 
 

n

E

n

Since X  is N( , 1/n) ,

let us consider  to be N(X , 1/n).
This is equiva θ  N(lent θ ,  1/ o )t .

μ

μ
∼  τ

 

n

Conceptually, this is similar to calling

[X 1.96 1/n] a 95% c.i. for .μ∓  
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If G* is taken to be N(θE, 1/τ), then 

E

E
E

( 1.96)PP( , B , G*) = [  ].
1

Compare this expression with
1.96CP( , B , ) = [  ].

1

τ

τ

θτ
τ

τ θ
τ

θ

−
Φ

−

−
Φ

−

τ

 

 
Reference: Lan KKG, Hu P, Proschan MA (2009) “A conditional 
power approach to the evaluation of predictive power.” Statistics in 
Biopharmaceutical Research;  1: 131-136.  
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G* ∼  N(θE, 1/τ)  
 

 M

M *G

(1- )(B 1.96 )θ  = ,  then
(1 )

CP( , B , θ ) = PP(CP( , B , θ ) .

τ

τ τ

τ

τ τ
τ τ

τ τ

+
−

E

E( 1.96)PP( , B , G*) = [  ]
1

If we modify the empirical drift θ  to

τ
θτ

τ
−

Φ
−
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In other words, if we replace the empirical drift  
θE by θM, the conditional power becomes the 
predictive power. 
 
By doing this, we don’t have to introduce PP as an 
integral to the clinicians. 
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 Quick summary: 
 
Under the empirical trend θE=Bτ/τ:  
 
If CP>50%, CP > PP >50%. 
If CP<50%, CP < PP <50%. 
 
If we replace the empirical drift θE=Bτ/τ by the modified 
drift θM, then CP =PP. 
 
*ECZ1= Bτ+(1-τ)θM is somewhere between 1.96 and θE. 
*The critical value 1.96 may be replaced by any other  
positive number. 
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θE = Bτ+(1-τ)θC = Bτ/τ. 
When θE > 1.96, CP >  PP > 50%.  
There is a drift θM < θE so that CP(τ, Bτ, θM) = PP. 
 
 

 

 
  
 
 
 
 
 
 

  

1.96

θE= Bτ/τ. 

Bτ+(1-τ)θM

0 τ 1
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θE = Bτ+(1-τ)θE = Bτ/τ. 
When θE < 1.96, CP <  PP < 50%.  
There is a drift θM > θE so that CP(τ, Bτ, θM) = PP. 

 
  

  

1.96

Bτ+(1-τ)θM

θE

1τ0
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Outline 
 
 

1. Brief review of some stochastic processes 
 Z (one-sample), Z (two-sample) and Z(logrank) 

2. Life table, hazard, Kaplan-Meier  
3. Linear rank statistics; logrank 
4. Mantel-Haenszel procedure 
5. Proportional Hazards Assumption, 

  practical problems, misinterpretation.  
6. Sample size estimation for a survival trial 
7. (Time permitting) Wilcoxon statistic, Mann-

 Whitney statistic, U-statistics  
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Why start with a one-sample problem?  
 
The mathematics behind a one-sample problem is 
very straightforward and easy to understand.  
Extension of the idea (not the mathematics) to the 
two-sample case needs only slight modifications. 
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One-sample hypothesis testing: 
 
Let X1, X2, …. be iid N(Δ, 1). 
 
Test H0: Δ = 0 versus Ha: Δ > 0. 
 
The test is Z(N) =(X1+ X2+…+ XN)/√N and we reject H0 if 
Z(N) ≥ 1.96. 
 
During interim analysis with n observations, we may 
compute Z(n) =(X1+ X2+…+ Xn)/√n. 
E[Z(N)] = NΔ/√N = Δ√N. 
{ Z(n) } is a stochastic process. 
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Change of scale:  Define τ = n/N. Re-write Z(n) as Zτ. 
Suppose we are going to evaluate Z three times at 0.3, 0.8 
and 1.0. Then {Z0.3, Z0.8, Z1.0} is a discrete stochastic 
process. 
 
Stochastic process versus final Z-value: 
 
*Suppose Z0.3 is observed, can we use it to predict Z1.0? 
*In a sequentially designed study, the DSMB evaluates the 
interim Z and make decision to modify the study design or 
stop the study early.  
 
 
 

Lan SCT_Part2, 05/16/10 Page 5 
 

 



One-sample case: {Z0.3, Z0.8, Z1.0}1  
 
Two-sample case: {Z0.3, Z0.8, Z1.0}2 
 
Survival studies (logrank): {Z0.3, Z0.8, Z1.0}S 
 
{Z0.3, Z0.8, Z1.0}1~ {Z0.3, Z0.8, Z1.0}2 ~ {Z0.3, Z0.8, Z1.0}S 
 
Under H0. 
Under Ha if Proportional Hazards Assumption is valid. 
 
What is logrank test?  What if the PHA is violated? 
These topics will be discussed later. 
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From one-sample to two-sample: 
 
(X1+…+Xn) – (Y1+…+Yn) 
= (X1-Y1)+…+(Xn-Yn) 
= D1 + D2 + …. +Dn 

 
Mathematically, it is easy to understand why a 
one-sample process {Zτ} is similar to two-sample 
process {Zτ} if the sample sizes for X and Y are 
the same.  
 
What if they are different? 
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In practice, are the observations (X, Y, D) iid?  
 
1. The “sicker” patients get into the study earlier. 
2.  Modification of the inclusion/exclusion criteria affects 

the iid’ness. 
3. The clinical centers may need a learning period to 

administer a new procedure. 
 
Keep this in mind when you design a clinical trial. 
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In the one-sample case: E[Z(N)] = NΔ/√N = Δ√N. 
X Yμ  - μ N NIn the two-sample case, EZ(N) =   =   .
σ 4 4

Δ  
 
EZ = Δ √(information)       (DRIFT PARAMETER) 
 
In the one-sample case, N = sample size = information. 
In the two-sample case, information = N/4. 
 
In the survival setting, we may compare two means of 
survival times, OR, use a linear rank statistic to compare 
two survival distributions. 
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Sample size and power for a one-sample problem 
 
Let X1, X2, …. be iid N(Δ, 1). 

Test H0: Δ = 0 versus Ha: Δ > 0. 
Z(N) =( X1+ X2+…+ XN)/√N. 
Then E[Z(N)] = NΔ/√N = Δ√N. 
 
Therefore, power ↑ with N if Δ > 0. 
 
More patients (information)  
  → more power (iid observations, survival???PHA) 

Lan SCT_Part2, 05/16/10 Page 10 
 



What happens if the X’s are independent but the means vary?  
X1 ~ N(Δ1, 1), X2 ~N(Δ2, 1).…. are independent. 
 
For example, X1 ~ N(1, 1), X2 ~N(1, 1), X3 ~ N(1, 1),  
X4 ~N(0, 1), X5 ~ N(0, 1) 
 
Z(1) ~ N(1, 1), Z(2) ~ N(1.41, 1), Z(3) ~ N(1.73, 1),  
Z(4) ~ N(1.5, 1), Z(5) ~ N(1.34, 1). 

 
Rule of thumb:  If μn+1 > 0.5 , 

n

i1
( )/nΔ∑

 
 then EZ(n+1) > EZ(n).  
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It can be shown that if the proportional 
hazards assumption (PHA) is violated, 
{Zlogrank} computed sequentially over 
time behaves like {Z(n)} with different 
Δ’s. 
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Life table 
 

 
t N d q p S 

0-1 1000 50 0.05 0.95 0.95 
1-2 950 38 0.04 0.96 0.912 
2-3 912 30 0.0329 0.9631 0.882 
3-4 882     

      

 
 
 
 
 

    
Hazard (discrete vers )ion

↑              
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Life Table   
   

t q p S 
0-1 0.05 0.95 0.95 
1-2 0.04 0.96 0.912 
2-3 0.0329 0.9631 0.882 
3-4    

    

 
 

Placebo   
 
 
 
 t q* p* S* 

0-1 0.05 x 0.8 0.96 0.96 
1-2 0.04 x 0.8 0.968 0.9293 
2-3 0.0329 x 0.8 0.97368 0.90482 
3-4    

    

↓ treatment effect =20% risk reduction

Proportional hazards assumption 
(discrete version)

 
Treatment
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From discrete to continuous 
 
 t N d q p S 

0-1 1000 50 0.05 0.95 0.95 
1-2 950 38 0.04 0.96 0.912 
2-3 912 30 0.0329 0.9631 0.882 
3-4 882     

      

   
 
 
 
 
 
 
 
 
 
 

Life Table              q(t) 
t → t + Δt          λ(t) Δt  
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Consider time interval from t to t+Δt (Δt may not be 1): 
q(t) = P(t ≤ T < t +Δt | t ≤ T),  
 
and the hazard function is defined as  
  

0

P(t  T < t+ t| t  T)
(t) = lim .

t t
λ

Δ →

≤ Δ ≤
Δ  
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Survival time T with distribution function F, density function f. 
 

F(t) =P[T≤t]; f(t) = dF(t)/dt; S(t) = 1- F(t) = P[T>t]. 
 

0

0

P(t  T < t+ t| t  T)
(t) = lim

F(t + t)-F(t) f(t)
       lim   = 

S(t) t S(t)
=

t

t

t
λ

Δ →

Δ →

≤ Δ ≤
Δ

Δ
Δ
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Life Table  (simplified version)  
 

 
   
 
 t N d q p S 

0-1 1000 50 0.05 0.95 0.95 
1-2 950 38 0.04 0.96 0.912 
2-3 912 30 0.0329 0.9631 0.882 
3-4 882     

      

 
 

         ↑ 
Conditional Probability 
= The discrete version of 
hazard 
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1

.95

.90

.85

| | | | | | month
0 1 2 3 4 5

S(t)
--

--

--

--

 

Survival curve



If λ(t) = λ, then S(t) = e-λt;  
F(t) = 1 - e-λt and f(t) = λ e-λt = λ(t)S(t). 

t

0

t

0

0

- λdt-λt - (t)

- λ(u)du- (t)

- λ(u)du

Rewrite S(t) = e  as  e  = e . 
(t) is called the cumulative hazard function. 

In general, if the hazard function is λ(t), then 

S(t) =  e  = e  ;

F(t) = 1- S(t) = 1 -  e

Λ

Λ

∫

Λ

∫
t

 and 
f(t) = (t)S(t)λ

∫
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Compare mean (average) survival times  
 
Treatments: A and B 
Average survival time of treatment A patients = 5.2 years. 
Average survival time of treatment B patients = 4.7 years. 
 
Censor data 
Parametric distributions (Exponential; Weibull,….) 
Non-parametric: (linear) rank tests  
 
Time-to-event measurements (waiting time) 
Event: death, 2nd MI, kidney transplant .... 
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Ranks in linear rank statistics 
 

Tennis players Mary Bill  Becky Gordon Pam 
Rank    1   2   3   4   5 

 
 

Team1: Bill and Gordon 
Team2: Mary, Becky and Pam 
 
Which team is better? 
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Scores in linear rank statistics 
 

Tennis players Mary Bill  Becky Gordon Pam 
Rank    1   2   3   4   5 
Price (Score) 
Average score = $1 

$2.50 $1.25 $1.00 $0.25 $0.00 

Centered score 
Net winnings 

$1.50 $0.25 $0.00 -$0.75 -$1.00 

 
 

Linear rank statistic: S = ∑ (Net winnings of team 2 players) 
                   = -∑ (Net winnings of team 1 players) 
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Net winnings of the girls’ team: 
$1.50 + $0 + (-$1.00) = $0.50. 
Net winnings of the boys’ team: -$0.50. 

 
The girls’ team is “better”. 
Is it significantly better? (Z = S/√Variance) 
 
What if we change from one set of scores to another set 
of scores?   
 
(Winner takes all!) 
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Ranks in a linear rank statistic 
         

 
 
 

Player Mary Bill Becky Gordon Pam 
Rank in skill 1 2 3 4      5 

 
Survival analysis and video games: 

 
 
 Player Mary Bill Becky Gordon  Pam 

Survival time 695 477 354 321    217 
Rank of order statistics 5 4 3 2      1 
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From tennis competition to video game 
 
Tennis competition: Rank #1 is the best. 
Video game:   Rank #1 is the WORST. 
 
In a video game, in addition to the ranking of the players, we 
also measure the time-to-event or survival times. 
 
In clinical trials, Team 1 = Control, Team 2 = New compound 
or new treatment procedure.
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Savage scores  
 

     Scores       Centered  Scores 
Pam  (217)  1/5       -1 
Gordon  (321)  1/5 + 1/4     -1 
Becky    (354)  1/5 + 1/4 + 1/3    -1 
Bill        (477)  1/5 + 1/4 + 1/3 + 1/2  -1 
Mary     (695)  1/5 + 1/4 + 1/3 + 1/2 + 1/1 -1 
 
 
Boys’s team: (1/5 +1/4 -1) + (1/5+1/4+1/3+1/2 - 1) 

    = - $ 0.27 
Girls’ team:  $0.27   (Savage statistic) 
The Girls’ team is better.  

Lan SCT_Part2, 05/16/10 Page 27 
 



Censored survival times 
 

 
 
 
 
 
 

Player Mary Bill Becky Gordon  Pam 
Survival time 695 477 354+ 321   217 
Rank 4,5 3,4 3,4,5 2     1 
 
 
Also, how can we modify the scores? 
     Scores       Centered  Scores 
Pam  (217)  1/5       -1 
Gordon  (321)  1/5 + 1/4     -1 
Becky    (354)  1/5 + 1/4 + 1/3    -1 
Bill        (477)  1/5 + 1/4 + 1/3 + 1/2  -1 
Mary     (695)  1/5 + 1/4 + 1/3 + 1/2 + 1/1 -1 
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In medical studies, we may have 1000 patients and 850 
censored survival times. 
 
Also, evaluation of the Var(S) will be VERY messy. 
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From scores to payments:  
   
   Scores       Centered  Scores 
Pam  (217)  1/5       -1 
Gordon  (321)  1/5 + 1/4     -1 
Becky    (354)  1/5 + 1/4 + 1/3    -1 
Bill        (477)  1/5 + 1/4 + 1/3 + 1/2  -1 
Mary     (695)  1/5 + 1/4 + 1/3 + 1/2 + 1/1 -1 

 
     Scores       Centered  Scores 
Pam  (217)  1/5       -1 
Gordon  (321)  1/5 + 1/4     -1 
Becky    (354)  1/5 + 1/4 + 1/3    -1 
Bill        (477)  1/5 + 1/4 + 1/3 + 1/2  -1 
Mary     (695)  1/5 + 1/4 + 1/3 + 1/2 + 1/1 -1 
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Censored data 
 
 

      Scores    Centered  scores 
 
Pam    (217)  1/5      -1 
Gordon  (321)  1/5 + 1/4    -1 
Becky    (354+)  1/5 + 1/4      
Bill        (477)  1/5 + 1/4 + 1/2   -1 
Mary      (695)  1/5 + 1/4 + 1/2 + 1/1 -1 
 
Net winnings 
Boys’ team: (1/5 +1/4 - 1)+(1/5+1/4+1/2 - 1) = - $ 0.60 
Girls’ team: $0.60  (Savage statistic or logrank statistic) 
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Under proportional hazards model, the (locally) optimal score 
function is φ(t) = - log (1-t). There are two sets of scores 
derived from this score function. 

 
1 1 1Savage score = + +....+  
N N-1 N-i+1

Logrank score = -  (1- ).
N+1

1When N is LARGE, use  dx = - log (1-x) to show
1

Savage score  logrank score.

ilog

The Savage statistic and the logrank statistic are 
asympototically equivalent.

x−
≈

∫
 



Alternative: Parametric location shift; Lehmann alternative... 
For a specific alternative, there is an optimal score function φ 
defined on the unit interval. There are two ways to define 
scores from a given score function: 
 
(1) Approximate scores; (2) Exact scores.  
The corresponding two statistics are asymptotic equivalent. 
 
References: 
1.  Hajek and Sidek (1967).  Theory of rank tests.  Academic 

Press, New York. 
2.  Randles and Wolfe (1979).  Introduction to the theory of 

nonparametric statistics.  John Wiley & Sons, New York. 
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Reference for the payment approach 
 
1. Lan and Wittes (1985), “Rank tests for survival 

analysis: A comparison by analogy with games”.  
Biometrics 41, 1063-1069. 

 
2. Proschan, Lan and Wittes (2006).   

Statistical Monitoring of Clinical Trials:  
A Unified Approach. Springer. Appendix 1. 
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Mantel-Haenszel Procedure (1959)  
 

Population Exposed(E) Unexposed( E )  
Disease 

(D) 
A B N1 = A + B 

No Disease 
( D ) 

C D N2 = C = D 

 M1=A + C M2 = B + D T 
 
 

1

2

1 1

2 2

1 1

2 2

/( | )
                           

( | ) /

/
( | ) / ( | )

  
( | ) / ( | )

/

/
( | ) / ( | )

( ) '
( | ) / ( | )

0.2
  =  2

0.1

0.2 / 0.8
  2.25

0.1 / 0.9

/

A MP D E
RR

P D E B M
A C
M MP D E P D E AD

OR
P D E P D E B D BC

M M
A C
N NP E D P E D AD

OR OR
P E D P E D B D BC

N N

= =

= =

= =

=

= =

=

 



Sample Exposed(E) Unexposed( E )  
Disease 

(D) 
a b n1 = a + b 

No Disease 
( D ) 

c d n2 = c + d 

 m1= a + c m2 = b + d T 

 
 
 
 
 
 
 

Observations:

(1)  For rare d iseases, RR OR (OR)'

P (D |E ) 0.01, P (D | ) 0.005,

0.01
2,

0.005
0.01 / 0.99

2.01.
0.005 / 0.995

(2)  RR  may not be estim able in  retrospective stud ies.

(3) RR 1 OR 1,

RR 1 1.

E

RR

OR

OR

≈ =

= =

= =

= =

= ⇔ =

>< ⇔ <>
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 2 X 2 Tables (partial odds ratio versus odds ratio) 
 
Male Treatment Placebo 
R  0.3   0.1   Partial OR 
NR  0.7   0.9   = .3x.9/.1x.7=3.86 
 
Female Treatment Placebo 
R  0.9   0.7   Partial OR 
NR  0.1   0.3   =.9x.3/.7x.1=3.86 
 
Population Treatment Placebo 
R   0.6   0.4 
NR   0.4   0.6  OR=.6x.6/.4x.4=2.25 
 
(Example given by Prof. Gary Koch, UNC) 
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More examples: 
1)  

S=1  S=2  1+2 
400 500  70 126  470 626 
600 1250  75 225  675 1475 
ORs=1=1.667  ORs=2=1.667  OR=1.641 

2)  
200 197  1000 63  1200 260 
156 233  1644 157  1800 390 
ORs=1.516  ORs=1.516  OR=1 

3)  
40 60  10 50   50 110 
60 90  50 250  110 340 

ORs=1  ORs=1  OR=1.4 
4)  

194 21  6 29   200 50 
706 79  94 871  800 950 
ORs=1=1.033  ORs=2=1.917  OR=4.75 

5)  
110 380  90 20   200 400 
390 2620  1410 980  1800 3600 
ORs=1=1.945  ORs=2=3.128  OR=1 
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Ho:  ϕ = 1  (partial odds ratio) vs.  Ha:  ϕ ≠ 1 
 

S=1   
m

S=2   
m

 S=k   

a1  11 a2  21    ……… ak  mk1
  m12   m22    mk2

n11 n12 N1 n21 n22       nk1 nk2 Nk 

 
 

         

i1 i1
i

i

i1 i2 i1 i2
i 2

i i

i i i
s

i i

i i
MH

i

  where  
Va

(a -Ea )
Ζ =  

Var(a )

i

m nEa =
N

   
m m n nr(a )=
N (N -1)

(a d /N )
φ̂ (MH)=

(b c /N )

⎧ ⎫
⎪ ⎪⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

∑
∑

∑
∑
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Partition the time interval under study into many, 
many very small sub-intervals. 
 
Consider the sub-interval [t, t + Δt). 
When 1 event occurred in this sub-interval:  
   

 D D     
     X  δt  mt δt  = 1 if “event” is X, 

otherwise, δt = 0.      Y   nt 
  1 Nt-1 mt+nt=Nt   

 
 

Observed – Expected = δt – mt/Nt. 
∑ (O-E) = cumulative difference 
 
 



 
When 0 event occurred in the sub-interval:  
   

 D D   
     X   mt 
     Y   nt 
 0 Nt mt+nt=Nt 

 

Observed – Expected = 0 – 0 = 0. 
 
“Mantel-Haenszel” the 2X2 tables over time. 
 

Ref: Mantel (1966).  “Evaluation of survival data and two new 
rank order statistics arising in its consideration.” Cancer 
Chemotherapy Reports 50,163-170. 
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The Mantel-Haenszel statistic (assume no ties): 
At T(i):       (concept of at risk, Wilcoxon) 
   
 D D    
     X δi  mi 

otherwise  0
a    is   if  1  (i)

=

= XTiδ

 
     Y   ni 

 1 Ni-1 mi+ni=Ni   
 

( )

( l o g r a n k )( )          
i

i
i

i

i
i

T t i

mS
N

mS t
N

δ

δ
≤

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

∑

∑
 

When there is no censoring and no ties, the Mantel-Haenszel statistic S = S (∞) 
becomes the Savage statistic. 
Ties can be handled. 



Time interval [t, t+Δt): 
 

 D D
     X P1 Q1 
     Y P2 Q2 

 

When Δt is “very small”,  
Q1 ≅ 1 ≅ Q2 and 
 Relative Risk = P1/P2 
≅ Odds ratio = P1Q2/P2Q1. 
 
When Δt → 0,  Odds ratio→ Relative Risk. 
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Time interval [t, t+Δt): 
 

 D D  

     X P1 = .02x0.0001 
    = .00002 

Q1=.99998 

     Y P2 = .01x.0001 
    = .00001 

Q2=.99999 

 
 
HR = .02/.01 = 2; RR = .00002/.00001= 2 
≈ (.00002/.99998)/(.00001/.99999)= OR 
As   Δt → 0, HR = RR → OR 
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 (1) Early stopping for the comparisons of two means 
 

( )
( )

2
1 2 1000

2
1 2 1000

1 2 500 501 1000

1 2 500 501 1000

0.5

:           vs      :

, , ,            ,

,  , ,            ,

, , ,             plus     , ,

, , ,                         , ,

x y a x y

x

y

H H

X X X iid N

Y Y Y iid N

X X X X X

Y Y Y Y Y

X
Z

ο μ μ μ μ

μ σ

μ σ

= >
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1
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            Z
1 1 1 1

?
500 500 1000 1000

Y X Y

σ σ

− −
=

+ +
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(2)  Comparisons of two survival curves 
 
 
 

1  
 

T 
 
 c 

 
 
 

 ? 
 
 
 
 
 1 2 40 3 
 
 

Proportional Hazards Model : 
( )

( )
c

T

t
r

t
λ
λ

=  
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Primary Endpoint = Mortality (which treatment is better?) 
 

The BHAT (Beta-Blocker Heart Attack Trial) was a 
randomized, double-blind multicenter clinical trial of 
propranolol versus placebo in patient.  The primary 
objective was to determine if long-term administration of 
propanolol in this population would result in a significant 
reduction in total mortality over the follow-up period.  
(BHAT Preliminary Report, JAMA 81) 

 
“The treatment is better than the placebo if it reduces 
mortality.” (12, 18 or 36 months?)   
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Definition #1:  The treatment delays the occurrence of death. 
 

 placebo treatment 
1% 3 days 5 days 
1% 10 days 20 days 
1% 15 days 35 days 

 

| | | | | | | | |

--

--

--

--

--

0 5 10 15 20 25 30 35 40

days

placebo
treatment

1

.99

.98

.97

.96
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Definition #2:  The treatment reduces hazard (all the time). 
 
Use the Kaplan-Meier Curves to define better: 
A better treatment prolongs life. 
 
Use logrank test to define better: 
A better treatment reduces hazard. 
 
BHAT:  Kaplan-Meier (T) > Kaplan-Meier (P) for 30 months. 
The two hazard functions crossed each other several times. (later) 
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Suppose the treatment delays the occurrence of death. 
 
 Most healthy 1 year Sickest 2 weeks 

 
Placebo  1 2 3 4 5 6 7 8 9 10 11 … 50 51 … 200 201 …400 
 
Treatment 1 2 3 4 5 6 7 8 9 10 11 … 50 51 … 200 201 …400 
 

2 weeks 1 year  
Placebo hazard  
  ∨ ∨  ∨   ∧ ∧  ∧     ∨ ∨  
Treatment hazard 

0-12 months Next 6 months Next 6 months  
 
Zt = logrank statistic evaluated at time t. EZ12 > EZ18 
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Sample size evaluation for a survival trial 
 

C T

logrank

Under the proportional hazards model, 
hazard ratio =λ (t)/λ (t) = HR and

E[ Z ] = (log HR) D/4 ,

D = expected number of events in the trials.
  

α β

T o reach a pow er of 100(1- )% , solve D  from  

E[logrank Z] =  (log H R ) D /4  =  z +z .

β
  

 
Note that in practice, D is unknown and not observable.  Therefore, we 
have to use observed number of events to replace D. Recruit N ≥ D 
patients and follow them until D events are observed.  
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logrank C T

logrank

For the comparison of two means, solve for N from 

EZ(N) = / 4  = z  + z .     

For the logrank tset,

EZ  = log (λ /λ ) D/4  = Δ D / 4  .

D = expected number of events.
Solve for D from 

EZ (D) = D

N α βΔ

Δ / 4  = z  + z . α β

 

Based on contiguous alternative and asymptotic theory. 
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Example:  HR = log(λC/λT) = 1.25, α = 0.025 (one-sided), power = 
85% or β = .15. 
 
E[Z logrank] = ln (1.25) 4

D  = 1.96+1.04 = 3  
⇒ D ≈724 (events) 
 
Recruit N ≥ 724 patients and follow them until 724 events are 
observed. 
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EXAMPLE: Assume 
1. 70% of the control patients survive 30 months; 
2. the treatment reduce hazard by 20%; 
3. survival times follow exponential distributions. 

 
-30λ

C T 

-Mλ
C

T

0.7 = e   λ = λ = 0.01189  λ = 0.00951.
To evaluate median survival time for the control group:
e  = 0.5  M = M  = median survival time for C = 58.30.
M  = 72.88.

→ →

→
 

 

 
 
EaST output on next page
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Another software for survival trial design 
 
 STOPP 
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The Wilcoxon statistic (1945) 
 
X1, X2, …, Xm   (m X’s and n Y’s) 
Y1, Y2, ..…,Yn 
T1, T2, … ,Tm, Tm+1, …,TN;  N = m+n 
T(1)< T(2)< … < T(i), …<T(N) 
 
Wicoxon score = rank ≈ rank/(N+1); φ(t) = t. 
ai = aNi = i 
Centered Wilcoxon score = 2

1+
−

Ni . 
A modified Wilcoxon score is ai = aNi = 1+N

i , and the 
corresponding centered score is 5.0

1
−

+N
i . 

 
Score = Rating 
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Mann-Whitney (1947) {U-statistic} 

{ } 1
MW # of ( , )  pairs 

2
 Centered Wilcoxon statistic

X Y X Y mn= ∋ < −

≡
 

 
Rank sum of  the Y’s     (m X’s and n Y’s) 
= (# of X’s < the smallest Y) + 1 
 +(# of X’s < the second smallest Y) + 2 
 +…… 
 + (# of the X’s < the largest Y) + n 
 
Centered Wilcoxon statistic   (m X’s and n Y’s) 
= Rank sum of  the Y’s – n (m+n+1)/2 
= {# of (X,Y) pairs }+ n(n+1)/2 – n(m+n+1)/2 
= {# of (X,Y) pairs } – mn/2 = MW 
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The Wilcoxon payments 
 
The “loser” at T(i), pays $1 to every competing player.  When there is no 
censoring, 
 

1

2

statistic

1

2 ( 1)

1
( 1) 2 ( 1) 2   .

2

'   Y's  2(centered Wilcoxon ).

i

i

a N

a N

N
a i N i i N i

S a s the

= −
= − −

⎧ ⎫⎪ ⎪+⎪ ⎪= − − + = − + = −⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭

= =∑
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Gehan statistic 
 
Mann-Whitney = MW

mn
= {# of (X,Y) pairs  X<Y} - .

2
Since mn =

#{X<Y} - #{Y<X} = #{X<Y}-[mn-#{X<Y}]=2MW.

 #{X<Y} + #{Y<X},

∋

 

 
Gehan = #{X<Y} - #{Y<X}; when there are censored 
observations, ignore pairs when the order of X, Y cannot be 
determined.  {5 & 3+;  5+ & 7+} 
 
The Wilcoxon payments: 
The “loser” at T(i), pays $1 to every competing player.   
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The Wilcoxon and Gehan statistics (assume no ties): At T(i):  
      

   
 D D    
     X δi  mi 

otherwise  0
a    is   if  1  (i)

=

= XTiδ

 
     Y   ni 

 1 Ni-1 mi+ni=Ni   
 

( )

i

*  =  (T )
1

When there is censoring, N /(N+1) estimates the survival curve of T C.

i
i i

i

i i i
i i i

i i

mS N
N

N m mS S
N N N

δ

δ δ

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
⎛ ⎞ ⎛ ⎞

− −⎜ ⎟ ⎜ ⎟+ ⎝ ⎠ ⎝ ⎠
Λ

∑

∑ ∑
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Peto-Peto-Prentice version of the Wilcoxon statistic 
 
 
Reference for the topic: 
Lan KKG and Wittes JT.   Rank tests for survival analysis:  A 
comparison by analogy with games.  Biometrics  1985;  41:  
1063-1069. 
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