Adaptive dose-finding for correlated bivariate data with applications to complement system inhibition studies

> Mitchell A. Thomann University of Iowa Department of Biostatistics

Outline

- 1. Adaptive dose-finding in phase I/II trials
- 2. Complement system inhibition studies
- 3. Method of adaptive dose-finding
- 4. Simulation study

Adaptive Dose-Finding in Phase I/II Trials

- Adaptive: subject's dose level is determined using previous subjects' data
- Phase I/II: Combines the goals of a phase I and phase II trials into a single trial
 - Identifies a dose or group of doses that meet some tolerability and effectiveness criteria
- Properties:
 - First-in-human (often)
 - Small sample size
 - Sequential enrollment
- Often use Bayesian statistical methods
 - Easily incorporates accumulating information

Bivariate Continual Reassessment Method (bCRM)

- Adaptive dose-finding method used in Phase I/II trials
- First bCRM proposed by Braun (2001) for binary toxicity and efficacy responses
- Three elements:
 - Probability distribution of the responses
 - Jointly or separately models the toxicity and efficacy responses
 - Dose-response models
 - Mathematical relationships between the efficacy and toxicity means and dose levels
 - Decision function
 - Function that combines toxicity and efficacy estimates to make decisions

Complement System Inhibition Studies

- The complement system is a part of the innate human immune system
- Inhibition of this system can provide therapeutic effects for inflammatory diseases
 - Ex: rheumatoid arthritis
- Treatments for such diseases may act through inhibition of the complement system
- Implication for clinical trials:
 - Complement system inhibition is an important surrogate measure for effectiveness

Complement System Inhibition Study Data

- Toxicity response binary indicator
- Efficacy response percentage of the complement system inhibited
 - Continuous
 - Bounded on [0,1]
- Options for Phase I/II trials:
 - Dichotomize the efficacy outcome (i.e. drug is successful if inhibition is > 0.50)
 - Lose information
 - Use approaches for continuous data
 - Assume that the data is normal
 - Do not account for bounded data
 - Create bCRM for bounded continuous data

Method—Responses

• For the *ith* subject, assigned the *jth* dose let:

$$- y_{bij} = \begin{cases} 1, toxicity \\ 0, no \ toxicity \end{cases}$$

- y_{cij} be the percentage inhibited
- d_j be the *jth* dose level
- $-1 \leq j \leq J, 1 \leq i \leq n_j$

Method—Distribution

• y_{bij} is assumed to be a binomial random variable with success probability p_{ij}

$$- f(y_{bij}|d_j) = exp\left[y_{bij}\log\left(\frac{p_{ij}}{1-p_{ij}}\right) + \log(1-p_{ij})\right]$$

• $y_{cij}|y_{bij}, d_j$ is assumed to be a normal random variable with mean $\mu_{ij} + \tau(y_{bij} - p_{ij})$, variance σ_j^2 , truncated to [0,1]

$$- f(y_{cij}|y_{bij}, d_j) = \frac{\frac{1}{\sigma_j} \phi\left(\frac{y_{cij} - \{\mu_{ij} + \tau(y_{bij} - p_{ij})\}}{\sigma_j}\right)}{\phi\left(\frac{1 - \{\mu_{ij} + \tau(y_{bij} - p_{ij})\}}{\sigma_j}\right) - \phi\left(\frac{0 - \{\mu_{ij} + \tau(y_{bij} - p_{ij})\}}{\sigma_j}\right)}{\sigma_j}$$

- Where \emptyset and Φ are the PDF and CDF of a standard normal distribution
- τ determines the correlation between the toxicity and efficacy responses
- The joint distribution function is:

$$- f(y_{bij}, y_{cij} | d_j) = f(y_{bij} | d_j) f(y_{cij} | y_{bij}, d_j)$$

Method—Dose-Response Models

 Linear dose-response models with logit link functions

- Toxicity

•
$$\log\left(\frac{p_{ij}}{1-p_{ij}}\right) = \alpha_0 + \alpha_1 d_j$$

•
$$\log\left(\frac{\mu_{ij}}{1-\mu_{ij}}\right) = \beta_0 + \beta_1 d_j$$

Method—Decision Function

- Prior to the trial, set:
 - p_0 : upper bound for unacceptable toxicity
 - μ_0 : lower bound for unacceptable efficacy
- Dose allocation:
 - Using the Metropolis-Hasting algorithm to estimate posterior means, find estimates $(\hat{p}_i, \hat{\mu}_i)$
 - Consider doses with $\hat{p}_j < p_0$ and $\hat{\mu}_j > \mu_0$
 - Optimally: $(p_j, \mu_j) = (0, 1)$
 - Of the doses under consideration, the dose with the smallest Euclidean distance from (0,1) is the dose allocated

•
$$\hat{e}_j = \sqrt{(0 - \hat{p}_j)^2 + (1 - \hat{\mu}_j)^2}$$

- End of study:
 - The dose with the minimum \hat{e}_j is the recommended dose (RD)

Simulation Study

- Maximum number of subjects = 36
- Subjects enrolled in groups of 3
- Toxicity and efficacy limits:
 - No early-stopping for futility
 - $\mu_0 = 0$
 - Toxicity limit of 0.30 targeted
 - p_0 varied from 0.30 to 1.00
 - Setting $p_0 = 0.30$ may be too strict, especially for early dose-allocation

Vague priors used for all parameters

Simulation Study – Data

Scenario	(p_1, μ_1)	(p_2,μ_2)	(p_3,μ_3)	(p_4,μ_4)	(p_5,μ_5)	(p_6,μ_6)
1	(0.01,0.10)	(0.04,0.45)	(0.17,0.86)	(0.48,0.98)	(0.80,0.99)	(0.95,0.99)
2	(0.31,0.50)	(0.37,0.88)	(0.43,0.98)	(0.49,0.99)	(0.55,0.99)	(0.61,0.99)

- Scenario 1: $d_j = 3$ is the true best dose
 - Dose with smallest distance to (0,1) that has acceptable toxicity
- Scenario 2: All doses are too toxic
 - Examines the effect of varying p_0

Simulation Study – Data

The University OF IOWA

Scenario 2 0 0 0 Toxicity/Efficacy/Distance 0.0 0 4 0.2 Toxicity Efficacy 0.0 Distance 2 1 3 4 5 6

Dose

The University Of Iowa

14

Scenario 1 – Results

Toxicity Limit	Percent Recommended						Sample Size	
p ₀	None	1	2	3	4	5	6	
0.30	0.3	0.3	17.2	81.4	0.8	0.0	0.0	28.6
0.35	0.1	0.2	10.9	87.4	1.3	0.1	0.0	27.4
0.40	0.0	0.4	6.8	91.2	1.6	0.0	0.0	27.6
0.45	0.2	0.2	4.7	94.6	0.5	0.0	0.0	27.0
0.50	0.2	0.0	2.7	96.4	0.7	0.0	0.0	27.0
1.00	0.0	0.2	2.3	96.5	1.0	0.0	0.0	26.8

- For all values of p_0 , greater than 80% correct dose recommendation
- Performs better for increased values of p_0
- Not much gained by increasing beyond $p_0 = 0.45$

Scenario 2 – Results

Toxicity Limit	Percent Recommended							Sample Size
p ₀	None	1	2	3	4	5	6	
0.30	62.4	24.3	11.5	1.7	0.1	0.0	0.0	16.3
0.35	55.8	24.7	17.3	2.2	0.0	0.0	0.0	16.9
0.40	52.4	26.4	19.5	1.7	0.0	0.0	0.0	16.7
0.45	42.9	20.7	32.8	3.6	0.0	0.0	0.0	18.5
0.50	44.7	24.8	28.0	2.5	0.0	0.0	0.0	20.1
1.00	28.8	5.4	53.0	2.5	0.0	0.0	0.0	18.7

- For all p_0 , all doses estimated to be too toxic at least 28% of the time
- As p_0 decreases, this percentage increases dramatically
- Values close to $p_0 = 0.30$ are more conservative with respect to toxicity

Conclusions

- This presentation introduced a bCRM for using in complement system inhibition studies
- This method performed well in the scenarios studied
- Simulation performance varies depending on toxicity limit
- Future work: compare results with other bCRMs and examine scenarios in which the dose-response models are misspecified

Questions?

