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Phase I-II Dose-Finding in Two Cycles

Goal: Develop a practical phase I-II trial design to adaptively
optimize each patient’s doses, d1 and d2, in two cycles of therapy,
using binary (Y,Z) = (Toxicity , Efficacy) in each cycle.

Methodology: Base cycle-specific actions on numerical utilities,
U(y, z), for (y, z) = (0,0), (1,0), (0,1), or (1,1)

1. Action in each cycle : Treat with the “optimal” dose, or do
not to treat, NT.
2. Dose-outcome model: Bayesian hierarchical
3. Optimization of (a1, a2): Apply Bellman (1957), using
posterior means of a model-based objective function
4. Safety: Include additional dose acceptability rules
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Doses, Outcomes, and Actions

Dose set {1, · · · ,m} Action set A = {1, · · · ,m} ∪ {NT}

di,c = dose, Yi,c = I(Toxicity), Zi,c = I(Efficacy) of pat. i in cycle c

Y i = (Yi,1, Yi,2), Zi = (Zi,1, Zi,2), di = (di,1, di,2)

X t = {(Y i,Zi,di) : i = 1, ..., nt} = current data at trial time t

ai,c = action taken for patient i in cycle c = 1 or 2

ai,1 maps X t to A ⇒ Adaptive between patients

ai,2 maps [ X t, cycle 1 data = (di,1, Yi,1, Zi,1) ] to A

⇒ Adaptive both between and within patients
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Actions versus Doses

Bellman’s Idea: First find aopt2 by considering all possibilities, then
work backwards to find aopt1 , assuming that aopt2 will be taken.

Finding aopt = (aopt1 , aopt2 ) is not the same thing as optimizing
doses separately in each cycle, dopt = (dopt1 , dopt2 ).

Example: (dopt1 , dopt2 ) = (3,2), but aopt = (3, aopt2 ) with

aopt2 = 3 if (Y1, Z1) = (0,1) = No Tox + Eff

aopt2 = 4 if (Y1, Z1) = (0,0) = No Tox + No Eff

aopt2 = 1 if (Y1, Z1) = (1,1) = Tox + Eff

aopt2 = NT if (Y1, Z1) = (1,0) = Tox + No Eff
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Joint distribution for [Y i,Zi | di]
An Ancient Technique: Use 4 continuous normal latent variables
to define 4 discrete observed variables. Induces association
among the discrete variables, facilitates posterior computation.

Real-valued, cycle-specific latent variables:
ξi = (ξi,1, ξi,2) for Y i and ηi = (ηi,1, ηi,2) for Zi

Observables: Yi,c = I(ξi,c > 0) and Zi,c = I(ηi,c > 0) ⇒

p(Y i,Zi | di) is induced by p(ξi,ηi | di)

(ξi,ηi) | di ∼ multiv. normal, means vary with di and patient
random effects, (ui, vi) that induce association
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Priors of the Hierarchical Model

Level 1 Priors on the Latent Variables (ξi,ηi)
For patient i in cycle c given dose di,c = d,

ξi,c | ui, ξ̄c,d, σ
2
ξ ∼ N(ξ̄c,d + ui, σ

2
ξ)

ηi,c | vi, η̄c,d, σ2
η ∼ N(η̄c,d + vi, σ

2
η)

Level 2 Priors on the Random Patient Effects (ui, vi)

ui, vi | ρ, τ2 iid∼ MVN2(0002,Σu,v)

where Σu,v has σ2
u = σ2

v = τ2 and covariances ρτ2.
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Priors of the Hierarchical Model

Level 2 Priors on the Mean Dose Effects (ξ̄, η̄)

p(ξ̄c,d|ξ̄c,−d) ∝ φ(ξ̄c,d|ξc,0, σ2
ξc,0

)1(ξ̄c,d−1 < ξ̄c,d < ξ̄c,d+1)

p(η̄c,d|η̄c,−d) ∝ φ(η̄c,d|ηc,0, σ2
ηc,0

)1(η̄c,d−1 < η̄c,d < η̄c,d+1)

Level 2 prior means : ξ0 = (ξ1,0, ξ2,0), η0 = (η1,0, η2,0)

Level 2 prior variances : σ2
ξ0

= (σ2
ξ1,0
, σ2
ξ2,0

), σ2
η0

= (σ2
η1,0

, σ2
η2,0

)

All fixed prior parameters : θ̃
12×1

= (ξ0,η0,σ
2
ξ0
,σ2

η0
, σ2
ξ , σ

2
η, τ

2, ρ)
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Distributions of (ξi,ηi) and (Y ,Z)

Latent variable distribution, after averaging over (ui, vi):

ξi,ηi | di, ξ̄, η̄, θ̃
iid∼ MVN4

(
µdi,Σξ,η

)
µdi = (ξ̄1,di,1, ξ̄2,di,2, η̄1,di,1, η̄2,di,2), depends on dose levels, but not
numerical dose values. Suppressing i, this induces

p(y, z | d,θ) = Pr(Y1 = y1, Y2 = y2, Z1 = z1, Z2 = z2 | d,θ)

as a 4-dimensional integral of φ(ξ,η|µd,Σξ,η) with mean dose
effects θ = (ξ̄, η̄).
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Establishing a Prior

Obtain a non-informative prior π(θ | θ̃) by using prior expected
sample size (ESS, Morita, et al., 2008) to calibrate θ̃

Prior informativeness, quantified by ESS, is implied by θ̃

Prototype Example: Be(a, b) with mean µ = a/(a+ b) and
variance µ(1− µ)/(a+ b+ 1) has exact ESS= a+ b.

More Complex Models: ESS is not at all obvious, so apply
various algorithms to compute exact or approximate prior ESS
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Prior Calibration Algorithm

1. Fix preliminary θ̃ − (ξ0,η0) = (σ2
ξ0
,σ2

η0
, σ2
ξ , σ

2
η, τ

2, ρ).
2. Solve for (ξ0,η0) using the elicited prior probabilities for a set
of doses and assumed hyperparameters.
3. Assume a vague, proper prior on θ with large σ2

ξ0
, σ2

η0
.

4. Simulate a large pseudo-sample of θ = (ξ̄, η̄) values
5. Compute several probabilities of interest, q(θ). E.g. q(θ) =
Pr(Y1 = 1 | d1, θ), Pr(Y1 = 2 | d1, Y1, Z1 | θ), etc.
6. Approximate the distribution of the simulated sample of each
q(θ) with a Be(a, b), match means and variances, and set ESS =
a+ b for the prior of q(θ).
7. Calibrate θ̃ by repeating Steps 1–6 until ESS values in the
range 0.5 to 2.0 are obtained for all q(θ).
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Objective Function

Utilities U(yc, zc) of outcomes in each cycle c = 1 or 2.
Efficacy (Zc)
No Yes

Toxicity No 35 100
(Yc) Yes 0 65

Mean utility of a2, given (d1, Y1, Z1,θ) :

Q2(a2, d1, Y1, Z1,θ) = E{U(Y2, Z2) | a2, d1, Y1, Z1,θ}

Cycle 2 Objective Function :

q2(a2, d1, Y1, Z1,X ) = E{Q2(a2, d1, Y1, Z1,θ) | a2, d1, Y1, Z1,X}.
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Objective Function

Mean utility of a1 = d1 given θ, assuming aopt2 (d1, Y1, Z1,X )

will be used in cycle 2 :

Q1(a1,θ) = Q1(d1,θ) = E{U(Y1, Z1) | d1,θ}

Cycle 1 Objective Function : Given cycle 2 discount parameter
0 < λ < 1, assume aopt2 will be taken in cycle 2 :

q1(d1,X ) = E{Q1(d1,θ) | X}
+ λ E

[
E{q2(aopt2 , d1, Y1, Z1,X ) | θ, d1} | d1,X

]
The optimal cycle 1 action, aopt1 , is the dose maximizing
q1(d1,X ), unless q1(d1,X ) < U(0, 0), which implies aopt1 = NT
and stops the trial.
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Additional Dose Acceptability Criteria

Motivation: We do not fully trust our model and decision-making
scheme, and want actual oncologists to use this methodology.

1. In each cycle, do not skip untried dose levels when escalating.

2. Do not escalate in cycle 2 if toxicity was observed in cycle 1:
d2 ≤ d1 if Y1 = 1, regardless of Z1.

3. d1 is unacceptable if q1(d1,X ) < U(0, 0)

4. d2 is unacceptable if q2(d2, d1, Y1, Z1,X ) < U(0, 0)

A1(X ) = acceptable doses for cycle 1

Ai,2(di,1, Yi,1, Zi,1,X ) = acceptable doses for cycle 2 of patient i
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Adaptive Randomization

Motivation: Greedy adaptive algorithms that always take the
optimal action risk getting stuck at a suboptimal action.

Define εi decreasing ↓ in patient index i, with εεε = (ε1, · · · , εn).

Cycle 1 : The set of εi-optimal doses for cycle 1 is

{d1 ∈ Ai,1(X ) : q1(d1,X ) > q1(aopt1,i ,X )− εi, }.

In words: An εi-optimal dose has posterior mean payoff near the
maximum (optimal) payoff.
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Adaptive Randomization

Cycle 2 : The set of (εi/2)-optimal doses for cycle 2 given
(di,1, Yi,1, Zi,1) is all acceptable d2 having posterior mean utility
within εi/2 of the maximum.

We use εi/2 because q2(a2, d1, Y1, Z1,X ) is the posterior
expected utility for cycle 2 only.

AR(ε)

Randomize the ith patient among the εi-optimal doses in cycle 1
and εi/2-optimal doses in cycle 2.
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The DTM2 Design: Trial Conduct

For the simulation study, we mimicked a typical phase I-II
chemotherapy trial with 5 dose levels, but accounting for 2 cycles
of therapy. Maximum sample size = 60, cohort size = 2.

Based on preliminary simulations, we set

εi = 20 for the first 10 patients

εi = 15 for the next 10 patients

εi = 10 for the last 40 patients.
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The DTM2 Design: Trial Conduct

1. Cohort 1 is treated at d = 1 in cycle 1, their (Y1, Z1) are
observed, posterior(θ | data) is computed, and actions taken for
cycle 2. When (Y2, Z2) are observed from cycle 2,
posterior(θ | data) is updated.

2. Cohort 2 is enrolled after cohort 1 has been evaluated for
cycle 1.

3. For cohorts 2, 3, ... , q1(d1,X ) is computed using λ = 0.8, aopt

is identified, and AR(εεε) is applied to choose a .

4. Steps 1 – 3 are repeated until the trial is stopped early, or N =
60 is reached and a final optimal two-cycle asel is chosen.
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2-Cycle Comparators

We compared the DTM2 design to 2-cycle extensions of 3+3
algorithms and the continual reassessment method (CRM)

(3+3)a implicitly targets d with P(Y1 = 1 | d) ≤ 0.17

(3+3)b implicitly targets d with P(Y1 = 1 | d) ≤ 0.33

The extended (3+3) methods both choose d2 as follows:

If Y1 = 1, then d2 = d1 − 1. (Tox in cycle 1⇒ de-escalate)

If Y1 = 0, then d2 = d1. ( No Tox in cycle 1⇒ repeat d1)
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2-Cycle Comparators

CRM model Pr(Y1 = 1|d) = p
exp(α)
d , with α ∼ N(0, 2) choosing

p1 < · · · < p5 using “getprior” in “dfcrm” (Cheung, 2011)

Cycle 1 : Each patient’s d1 was chosen
(i) to have posterior mean Pr(Tox) closest to 0.30
(ii) imposing the “do not skip an untried dose” rule.

Cycle 2 : d2 was chosen using the same rule as for the extended
(3+3) methods. Also, d2 was unacceptable if

Pr{Pr(Y1 = 1 or Y2 = 1) > 0.50|X ,d} > 0.90.

In words: A cycle 2 dose is too high if it makes it likely that the
probability of at least one toxicity in two cycles is over 50%.
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Simulation Study: Evaluation Criteria

Empirical mean total utility for n patients in the trial :

Ū =
∑n
i=1{U(Yi,1, Zi,1) + U(Yi,2, Zi,2)}/n

setting U(Yi,2, Zi,2) = U(0, 0) if ai,2 = NT.

Empirical mean total payoff for all patents :

¯̄U =
1

N

N∑
r=1

Ū (r).

indexing simulated trials by r = 1, ..., N. This quantifies ethical
desirability, given U(y, z).
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Simulation Study: Evaluation Criteria

Expected payoff of a1,sel, given θtrue :

Q1,sel(a1,sel) = E{U(Y1, Z1) | a1,sel,θ
true},

Expected payoff of a2,sel :

Q2,sel(a2,sel) = E{U(Y2, Z2) | a1,sel, a2,sel(y1, z1), y1, z1,θ
true}

where E{U(Y2, Z2) | a1,sel, a2,sel(y1, z1), y1, z1,θ
true} = U(0, 0) if

a2,sel(y1, z1) = NT .

Expected payoff to a future patient treated using aselect :

Qsel(asel) = Q1,sel(a1,sel) + λQ2,sel(a2,sel).
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Simulation Study: Evaluation Criteria

Denote δi,2 = 1 if patient i received ai,2 = d2, and δi,2 =0 if
ai,2 = NT.

Empirical Toxicity and Efficacy Probabilities

Pr(Tox) = 1
n

∑n
i=1

1(Yi,1=1)+δi,21(Yi,2=1)

1+δi,2

Pr(Eff) = n−1
∑n
i=1

1(Zi,1=1)+δi,21(Zi,2=1)

1+δi,2
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Simulation Scenarios

True (pT , pE)true under the four simulations scenarios.

Scenario Cycles Doses
1 2 3 4 5

1 1 (0.10, 0.02) (0.15, 0.03) (0.30, 0.05) (0.45, 0.08) (0.55, 0.10)
2 (0.13, 0.01) (0.18, 0.02) (0.33, 0.04) (0.48, 0.07) (0.58, 0.09)

2 1 (0.30, 0.50) (0.32, 0.60) (0.35, 0.70) (0.38, 0.80) (0.40, 0.90)
2 (0.33, 0.45) (0.35, 0.55) (0.38, 0.65) (0.41, 0.75) (0.43, 0.85)

3 1 (0.05, 0.10) (0.18, 0.13) (0.20, 0.25) (0.40, 0.26) (0.50, 0.27)
2 (0.30, 0.20) (0.31, 0.35) (0.32, 0.45) (0.45, 0.65) (0.65, 0.70)

4 1 (0.13, 0.06) (0.15, 0.18) (0.25, 0.35) (0.55, 0.38) (0.75, 0.40)
2 (0.20, 0.14 ) (0.25, 0.23) (0.35, 0.29) (0.50, 0.32) (0.80, 0.35)
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Scenario Descriptions

Scenario 1: d = 1, 2, 3 safe, d = 3, 4 too toxic, but all doses have low efficacy
⇒ The optimal action is to stop the trial early.

Scenario 2: 0.30 ≤ pT (d1) ≤ 0.40 and .33 ≤ pT (d2) ≤ 0.43 with very high
pE(d1) and pE(d2)⇒ Big payoff for escalating to higher doses.

Scenario 3: aopt1 = 3, with aopt2 (Y1 = 0) = 4 and aopt2 (Y1 = 1) = 2⇒ Accounting
for Y1 is very important when choosing d2

Scenario 4: The optimal doses happen to coincide with what the 3+3 and
CRM choose while ignoring efficacy. “A stopped clock is right twice a
day.”
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Optimal Actions Under the 4 Scenarios

Scenario aopt1 aopt2

(0,0) (0, 1) (1,0) (1,1)
1 NT NT NT NT NT
2 5 5 5 4 4
3 3 4 4 2 2
4 3 3 3 NT 2
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Percent Completed Trials

Scenarios DTM2 (3+3)a (3+3)b Extended CRM
1 2.3 88.6 96.5 99.8
2 99.4 39.2 64.7 93.1
3 79.4 99.6 99.2 99.8
4 96.7 83.2 94.7 99.8

In Scenario 1, DTM2 finds that all doses are inefficacious, and stops the
trial 97.7% of the time. The other 3 methods all ignore efficacy and
continue to treat patients.
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Summary of Simulation Results
Scenario DTM2 (3+3)a (3+3)b Extended CRM

2 ¯̄U 136.35 123.32 117.78 116.38
Qselect 135.76 103.85 104.48 103.17
Pr(Tox) 0.39 0.30 0.34 0.37
Pr(Eff) 0.72 0.57 0.55 0.57

3 ¯̄U 94.23 85.72 85.49 89.29
Qselect 84.39 77.97 80.13 78.29
Pr(Tox) 0.38 0.27 0.28 0.30
Pr(Eff) 0.38 0.26 0.27 0.33

4 ¯̄U 75.84 81.83 79.85 84.88
Qselect 69.49 74.92 75.76 79.12
Pr(Tox) 0.51 0.25 0.27 0.29
Pr(Eff) 0.29 0.22 0.21 0.29
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Some Conclusions

1: A “Bayes Meets Bellman” dose-finding method, adaptive between and
within patients, with lots of model-method-computing machinery.

2: Very good properties compared to “toxicity only” 2-cycle methods –
but not in all cases.

3: Are 2 cycles better than 1 ? Sometimes Yes, sometimes No.

4: Very sensitive to U(y, z)⇒ It is essential to calibrate U(y, z) with the
physician/scientists when designing an actual trial.

5: U(y, z) is not enough! Additional safety/efficacy restrictions are
needed.




